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1. Introduction

In this article we consider the Cauchy problem of the form{
ut + ∆2u = f(x, u), t > 0, x ∈ RN ,

u(0, x) = u0(x), x ∈ RN ,
(1.1)

where the nonlinear term is assumed to satisfy a certain critical or supercritical growth
condition.

Critical exponents appear naturally when dealing with the well posedness of partial dif-
ferential equations and they typically arise from Sobolev embeddings. These exponents
describe, among others, the largest growth allowed for the nonlinear term in a given class of
initial data. As such, critical exponents only account for growth of the nonlinear terms and
not for its sign. Thus, they do not distinguish in general between “good” or “bad”-signed
nonlinearities, e.g. for nonlinearities that for large values of u behave like ±|u|ρ−1u. However
the sign of the nonlinear term is known to have a deep impact in the behavior of solutions
of nonlinear problems.

For reaction diffusion equations{
ut −∆u = f(x, u), t > 0, x ∈ RN ,

u(0, x) = u0(x), x ∈ RN ,
(1.2)

and considering for example initial data in the “energy” space H1(RN), if |f(x, u)| ≈ |u|ρ for
|u| large, local existence holds for ρ ≤ 1 + 4

N−2
, see e.g. [2], while if f(x, u) ≈ |u|ρ−1u for |u|

large, if ρ > 1 + 4
N−2

then (1.2) is ill posed, see [5]. Note that (1.2) has naturally associated
the energy functional

ERD(u) :=
1

2

∫
RN
|∇u|2 −

∫
RN
F (x, u),

where F (x, u) =
∫ u

0
f(x, s) ds and if |f(x, u)| ≈ |u|ρ for |u| large, then typically |F (x, u)| ≈

|u|ρ+1 for |u| large. Thus the critical exponent ρc = 1 + 4
N−2

in H1(RN) arises naturally as

the largest value of ρ such that H1(RN) ⊂ Lρ+1(RN). For larger ρ the nonlinear term can
not be controlled by the quadratic one.

On the other hand, it is known that when f(x, u) ≈ −|u|ρ−1u for |u| large, the Cauchy
problem (1.2) is well posed and dissipative for any value of ρ, see [3]. A key point in the
analysis of (1.2) in [3] is that, by the maximum principle, for any value of ρ, the solution of
(1.2) becomes bounded in L∞(RN).

Observe that (1.1) has also a natural energy

E(u) :=
1

2

∫
RN
|∆u|2 −

∫
RN
F (x, u). (1.3)

As for (1.2), the critical exponent for (1.1), ρc = 1 + 8
N−4

in H2(RN), arises naturally as

the largest value of ρ such that H2(RN) ⊂ Lρ+1(RN). For supercritical nonlinearities, if
ρ > ρc and if f(x, u) ≈ −|u|ρ−1u for |u| large, then (1.3) gives bounds on the solutions in
H2(RN) ∩ Lρ+1(RN). However this is not enough to prove that the solutions exists for all
times, which depends strongly in proving that the solution remains in L∞(RN), see [13].

In particular, it was proved in [13, Proposition 3.3] that if u ∈ L∞((0, T ), Ls0(RN)) and

s0 >
N

4
(ρ− 1) (1.4)
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then ‖u‖L∞((ε,T ),L∞(RN )) ≤ K(ε, ‖u‖L∞((0,T ),Ls0 (RN ))) for any ε > 0 small. But we can take

s0 = ρ+ 1 on (1.4) only if ρ is subcritical in H2(RN).
For (1.2) the arguments in [3] and [5] mentioned above use in an essential way the maxi-

mum principle, which does not hold for fourth order equations since the kernel of the linear
evolution operator changes sign, e.g. [21]. On the other hand, for the second order parabolic
problems satisfying some general assumptions, by the Moser-Alikakos technique, [1], suitably
weak estimate of the solutions actually implies the L∞-bound. Neither of these, nor other
techniques of getting L∞-bound on the solutions (see e.g. [26, Theorem II.6.1]), are directly
applicable to (1.1), due to the presence of the higher order terms in (1.1).

Hence, one of the motivations for this paper is to extend the results in [3] and [5] for (1.1).
Problems like (1.1) drew lots of attention in the recent years; see e.g. [9, 15, 16, 17, 18,
19, 20, 12, 13] and references therein. In particular in [12] local existence of solutions for
(1.1) was discussed for several classes of initial data and up to critical nonlinear terms. Also,
global existence and asymptotic behavior was studied in [13] for subcritical “good”–signed
nonlinear terms. On the other hand [9, 15, 16, 17, 18] payed attention to global solutions of
supercritical “bad”–signed nonlinear terms. For this additional restrictions on the size and
behavior at infinity of the initial data are required.

In this paper our goals are twofold. For good signed nonlinear terms, we will extend some
of the results in [13] to supercritical nonlinearities. For this, we assume that the nonlinear
term in (1.1) is of the general form

f(x, u) = g(x) +m(x)u+ f0(x, u), x ∈ RN , u ∈ R, (1.5)

where

g ∈ L2(RN). (1.6)

and

m ∈ LrU(RN), r >
N

4
, r ≥ 2 (1.7)

where the uniform space LrU(RN), for 1 ≤ r ≤ ∞, is defined as

LrU(RN)
def
= {φ ∈ Lrloc(RN) : ‖φ‖LrU (RN ) = sup

y∈RN
‖φ‖Lr({|x−y|≤1}) <∞},

in particular L∞U (RN) := L∞(RN) (see [4]).
For f0 : RN × R→ R we require that

f0(x, 0) = 0, x ∈ RN , (1.8)

|∂f0

∂u
(x, u)| ≤ c(1 + |u|ρ−1), x ∈ RN , u ∈ R, (1.9)

for some c > 0 and ρ > 1 such that

ρ ≥ N + 4

N − 4
= 1 +

8

N − 4
and N ≥ 5. (1.10)

and
∂f0

∂u
(x, u) is locally Lipschitz in u ∈ R uniformly for x ∈ RN . (1.11)

We finally assume the structure condition

uf(x, u) ≤ C(x)u2 +D(x)|u| − aρ|u|ρ+1, x ∈ RN , u ∈ R, (1.12)
3



where

C ∈ LrU(RN), r >
N

4
,

0 ≤ D ∈ Ls(RN),
2N

N + 4
≤ s ≤ 2,

aρ is a strictly positive constant for ρ >
N + 4

N − 4
and aρ = 0 for ρ =

N + 4

N − 4

(1.13)

and
∂f

∂u
(x, u) ≤ L(x) for some L ∈ LσU(RN), σ >

N

4
. (1.14)

Note that (1.14) implies (1.12) with aρ = 0 since

uf(x, u) = u(f(x, u)− f(x, 0)) + uf(x, 0) ≤ L(x)u2 + |g(x)||u| for x ∈ RN , u ∈ R.
Also the following stronger assumption implies both (1.14) and (1.12)

∂f

∂u
(x, u) ≤ L(x)− aρ|u|ρ−1 (1.15)

for some L ∈ LσU(RN), σ > N
4

. This applies to logistic type maps, like

f(x, u) = g(x) +m(x)u− n(x)|u|ρ−1u, x ∈ RN , u ∈ R,
with n(x) ≥ n0 > 0 for a.e. x ∈ RN .

With these assumptions we then show that the problem (1.1) is globally well posed in
L2(RN).

Theorem 1.1. Assume (1.5)–(1.14). Then for u0 ∈ L2(RN) there exists a function u =
u(·;u0) such that for any T > 0

u ∈ C([0, T ], L2(RN)) ∩H1((0, T ), H2(RN)) ∩ L∞((0, T ), Lρ+1(RN))

that satisfies (1.1) in the sense that∫
RN

(du
dt
v + ∆u∆v − f(x, u)v

)
= 0

holds for a.e. t > 0 with any v ∈ H2(RN) ∩ Lρ+1(RN), or equivalently,

du

dt
+ ∆2u− f(·, u) = 0 in L

ρ+1
ρ

loc ((0,∞), (H2(RN) ∩ Lρ+1(RN))′).

Also, for any τ > 0,

u(t) = e−∆2(t−τ)u(τ) +

∫ t

τ

e−∆2(t−s)f(·, u(s))ds, t > τ

and u(τ) → u0 in L2(RN) as τ → 0. If u0 is sufficiently smooth, e.g. u0 ∈ C∞0 (RN), then
the above holds for τ = 0. Furthermore, if u0 ∈ H2(RN) ∩ Lρ+1(RN) then

u : [0, T ]→ H2(RN) ∩ Lρ+1(RN) is weakly continuous.

Finally, for u01, u02 ∈ L2(RN) and T > 0,

‖u(·, u01)− u(·, u02)‖C([0,T ],L2(RN ))∩L2((0,T ),H2(RN )) ≤ c(T )‖u01 − u02‖L2(RN ),

for some c(T ) > 0.
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Thus

S(t) : L2(RN)→ L2(RN), S(t)u0 = u(t;u0) for t ≥ 0, u0 ∈ L2(RN),

defines a C0 semigroup {S(t) : t ≥ 0} associated to (1.1) in L2(RN).
We also establish some other properties of the semigroup {S(t) : t ≥ 0}. We show that

for any t > 0, S(t) takes L2(RN) into H2(RN) ∩ Lρ+1(RN) and {S(t) : t ≥ 0}, restricted to
H2(RN) ∩ Lρ+1(RN), is a closed semigroup (thus also asymptotically closed) in H2(RN) ∩
Lρ+1(RN) (see [28, 11]).

If, additionally, the linear and nonlinear parts of the equation suitably cooperate; that is
the solutions of the linear problem{

ut + ∆2u = C(x), t > 0, x ∈ RN ,

u(0, x) = u0(x), x ∈ RN ,
(1.16)

are asymptotically decaying in L2(RN) or, equivalently,∫
RN

(|∆φ|2 − C(x)φ2) ≥ ω0‖φ‖2
L2(RN ), φ ∈ H

2(RN). (1.17)

holds for some ω0 strictly positive (see [13, Theorem 2.1]), we show that there exists a
bounded set B0 in L2(RN) absorbing bounded sets in L2(RN) under {S(t) : t ≥ 0}. Moreover,
we prove

Theorem 1.2. Assume (1.5)–(1.14) and suppose that (1.17) holds for some ω0 strictly
positive.

Then, the semigroup associated to (1.1) in L2(RN) has a global attractor A, that is A is
invariant, compact in L2(RN) and

sup
b∈B

inf
a∈A
‖S(t)b− a‖H2(RN ) → 0 as t→∞

for each bounded subset B of L2(RN). In addition, A is bounded in H2(RN) ∩ Lρ+1(RN).

We also show that each individual solution somehow approaches the set of equilibria of
(1.1).

On the other hand we prove that problems like (1.1) with supercritical “bad”-signed
nonlinearities are generally ill posed. In particular for the problem{

ut + ∆2u = |u|ρ−1u, t > 0, x ∈ RN ,

u(0, x) = u0(x), x ∈ RN ,
(1.18)

whose natural energy is given by

E(u) =
1

2

∫
RN
|∆u|2 − 1

ρ+ 1

∫
RN
|u|ρ+1, (1.19)

we prove the following. Given ρ > 1, let u0 be a smooth enough function. Then we say that
u(x, t) is a local finite energy solution of (1.18) if it is defined for some 0 ≤ t < T ≤ ∞ and
for each t, u(t) ∈ H2(RN) ∩ Lρ+1(RN), ut(t) ∈ L2(RN), satisfies the equation in (1.18) and
t 7→ E(u(t)) is absolutely continuous.

Theorem 1.3. Assume

ρ >
N + 4

N − 4
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and assume u0 is a smooth enough initial data such that

E(u0) < 0

and there exists a local finite energy solution of (1.18).
Then (1.18) is ill posed in the sense of Hadamard in the class of finite energy solutions.

More precisely there exists a sequence of smooth functions un0 such that

un0 → 0 in H2(RN) ∩ Lρ+1(RN)

with negative energy, E(un0 ) < 0, and the corresponding finite energy solutions have existence
times

Tn → 0.

If

ρ =
N + 4

N − 4

then (1.18) is not uniformly well posed in the class of finite energy solutions. More precisely
there exists a sequence of smooth functions un0 such that

un0 is bounded in H2(RN) ∩ Lρ+1(RN)

with negative energy, E(un0 ) < 0, and the corresponding finite energy solutions have existence
times

Tn → 0.

We also discuss ill–possedness for other classes of solutions.

Some general comments on the assumptions above are in place. First, note that the super-
critical range we consider (1.10) requires N ≥ 5, since for N ≤ 4 any value of ρ is subcritical.
Although this may look unnatural from the physical point of view, mathematically it is in-
teresting to understand how linear and nonlinear terms interact in equations like (1.1). Also,
with assumption (1.12) with aρ = 0, global existence and asymptotic behavior of solutions
was studied in [13] either for subcritical problems in H2(RN), i.e. ρ < 1 + 8

N−4
, or up to

critical in L2(RN), i.e. ρ ≤ 1 + 8
N

. With the stronger assumption (1.14) that paper also
considered subcritical problems in H2(RN) and, as in Theorem 1.1, the solution was con-
structed for initial data in L2(RN). Here we have been forced to consider both (1.12) and
(1.14) simultaneously, which can be obtained from (1.15). However in the particular case of
critical ρ = 1 + 8

N−4
, our results here extend the ones in [13].

A big difference between the analysis carried out in [3] for (1.2) and the one here for (1.1)
is the following. For both (1.1) and (1.2) and given some value of ρ > 1, it is always possible
to consider smooth enough initial data such that the problem is subcritical, see e.g. [3] and
[12], thus local existence of solutions follows. To prove global existence for these smooth
solutions under some condition on f(x, u) like (1.14), for (1.2) the maximum principle gives
L∞ bounds which do the job. However for (1.1) maximum principle does not apply and one
has to rely on energy estimates. But for such smooth solutions, (1.3) does not provide enough
information to prove global existence. Thus, for (1.2), one can use a density argument and
extend the global solution for initial data in say, L2(RN). Therefore, here instead of just
taking smoother initial data to begin with, we also regularize the equation (1.1) to make it
subcritical and start the solution and prove it is global.
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A brief description of the contents of this paper is as follows. In Section 2 we consider a
family of approximate regularized problems and derive the estimates of approximate solu-
tions.

In Section 3, for smooth initial data, we obtain a solution of (1.1) as the limit solution of
the solutions of the regularized problems. We also prove such solution is unique in a suitable
class. We then extend such solutions to initial data in L2(RN). In particular, we prove
Theorem 1.1.

In Section 4 we show the solutions in Section 3 define a C0-semigroup in L2(RN) and
exhibit its dissipative properties. In particular, we complete the proof of Theorem 1.2 and
that each individual solution somehow approaches the set of equilibria of (1.1), see Theorem
4.8.

Finally in Section 5 we turn our attention to the problem with “bad”-signed nonlinearity,
(1.18), and prove that a local finite energy solution with negative initial energy ceases to
exists in finite time, see Theorem 5.2. Using this and some scaling properties of (1.18) we
prove Theorem 1.3.

Section 6 contains some final remarks concerning the supercrtitical nature of the nonlinear
term.

Acknowledgment. This work was carried out while the first author visited Departamento
de Matemática Aplicada, Universidad Complutense de Madrid. He wishes to acknowledge
hospitality of the people from this Institution.

2. Approximate solutions and a priori estimates

In this section we consider a family of approximate regularized problems{
uηt + ηΛ2kuη + ∆2uη = f(x, uη), t > 0, x ∈ RN ,

uη(0, x) = u0(x), x ∈ RN ,
(2.1)

where η ∈ (0, 1], 4k > N and
Λ := −∆ + Id. (2.2)

We will show below that (2.1) is well posed for u0 ∈ H2k(RN) and the solutions are globally
defined for t ≥ 0. Using this, in what follows, we obtain some bounds on the solutions of
(2.1). Note that we denote systematically below by c a constant that is independent of η.

We start with two preliminary results that will be used several times henceforth.

Proposition 2.1. Suppose that C ∈ LrU(RN) and r > max{N
4
, 1}.

Then, there exists a certain ω0 ∈ R such that (1.17) is satisfied. There exists also a
continuous decreasing real valued function ω(ν) defined in a certain interval [0, ν0] such that

lim
ν→0+

ω(ν) = ω(0) = ω0

and ∫
RN

(
(1− ν)|∆φ|2 − C(x)φ2

)
≥ ω(ν)

∫
RN
φ2 for all φ ∈ H2(RN), ν ∈ [0, ν0].

Consider now the bilinear form b : H2(RN)×H2(RN)→ R

b(φ, ψ) =

∫
RN
C(x)φψ, φ, ψ ∈ H2(RN), (2.3)

for which we have the following result.
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Proposition 2.2. Suppose that C ∈ LrU(RN) with r ≥ N
4

and r > 1.
Then for some c0 > 0 we have

|b(φ, ψ)| ≤ c0‖φ‖H2(RN )‖ψ‖H2(RN ), φ, ψ ∈ H2(RN).

Proof: Suppose that r <∞ as for r =∞ the result is obvious.
We cover RN with cubes Qi, i ∈ ZN , centered at i ∈ ZN and having unitary edges parallel

to the axes so that RN = ∪i∈ZNQi, where Qi∩Qj = ∅ for i 6= j. Hence, applying a generalized
Hölder’s inequality with p1, p2, p3 > 1, 1

p1
+ 1

p2
+ 1

p3
= 1, we get

|
∫
RN
Cφψ| ≤

∑
i∈ZN

∫
Qi

|C||φ||ψ| ≤
∑
i∈ZN
‖C‖Lp1 (Qi)‖φ‖Lp2 (Qi)‖ψ‖Lp3 (Qi).

If N > 5 this holds for p1 = N
4

, p2 = p3 = 2N
N−4

. If N ≤ 4 this holds with p1 = r,

p2 = p3 = 2r′. In either case LrU(RN) ⊂ Lp1(Qi), H
2(Qi) ⊂ Lp2(Qi)∩Lp3(Qi) and we get that

|
∫
RN Cφψ| is bounded by a multiple of ‖C‖LrU (RN )

(∑
i∈ZN ‖φ‖2

H2(Qi)

) 1
2 (∑

i∈ZN ‖ψ‖H2(Qi)

) 1
2 .

Consequently, |
∫
RN Cφψ| ≤ c‖C‖LrU (RN )‖φ‖H2(RN )‖ψ‖H2(RN ), which proves the result. �

2.1. Estimates up to time t = 0.

Lemma 2.3. Assume (1.5)–(1.13) and ‖u0‖L2(RN ) ≤ R.
Then, for every T > 0, we have

‖uη(t)‖2
L2(RN ) ≤M1(R, T ), 0 ≤ t ≤ T (2.4)

for some M1(R, T ) independent of η ∈ (0, 1].
Furthermore,

‖uη‖2
L2((0,T ),H2(RN )) + aρ‖uη‖ρ+1

Lρ+1((0,T ),Lρ+1(RN ))
≤M2(R, T ), (2.5)

for some M2(R, T ) independent of η ∈ (0, 1].
If (1.17) holds for some ω0 > 0 we have in fact

‖uη(t)‖2
L2(RN ) ≤ ‖u0‖2

L2(RN )e
−ωt +M(1− e−ωt)

for some M,ω > 0 and independent of η.

Proof: Multiplying (2.1) by uη, integrating, using (1.12)-(1.13) and the embeddingH2(RN) ↪→
Ls

′
(RN), with s as in (1.13), we get

1

2

d

dt
‖uη‖2

L2(RN ) + η‖Λkuη‖2
L2(RN ) + ‖∆uη‖2

L2(RN ) + aρ‖uη‖ρ+1
Lρ+1(RN )

≤
∫
RN
C(x)|uη|2 +

∫
RN
D(x)|uη| ≤

∫
RN
C(x)|uη|2 + ‖D‖Ls(RN )‖uη‖H2(RN )

and hence

1

2

d

dt
‖uη‖2

L2(RN ) + η‖Λkuη‖2
L2(RN ) + ‖∆uη‖2

L2(RN ) + aρ‖uη‖ρ+1
Lρ+1(RN )

≤
∫
RN
C(x)|uη|2 +

c

ε
‖D‖2

Ls(RN ) +
ε

2

(
‖∆uη‖2

L2(RN ) + ‖uη‖2
L2(RN )

)
.
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Writing ‖∆uη‖2
L2(RN ) as ε‖∆uη‖2

L2(RN ) + (1 − ε)‖∆uη‖2
L2(RN ) and using Proposition 2.1 we

get

1

2

d

dt
‖uη‖2

L2(RN ) + η‖Λkuη‖2
L2(RN ) +

ε

2
‖∆uη‖2

L2(RN ) + aρ‖uη‖ρ+1
Lρ+1(RN )

+ ω‖uη‖2
L2(RN )

≤ c

ε
‖D‖2

Ls(RN )

(2.6)

for some ω ∈ R, which is positive if ω0 in (2.3) is positive. Gronwall’s lemma now leads to
(2.4), while integrating (2.6) and using (2.4) we get (2.5). �

Lemma 2.4. Besides the assumptions of Lemma 2.3 assume also (1.14) and u0 ∈ H4k(RN).
Then the solutions of (2.1) satisfy the estimates

‖uηt (t)‖2
L2(RN ) ≤ ‖ − ηΛ2ku0 + (−∆2 +m)u0 + f0(·, u0) + g‖2

L2(RN )e
−ω̂t (2.7)

and

‖uηt ‖2
L2((0,t),H2(RN )) ≤ c‖ − ηΛ2ku0 + (−∆2 +m)u0 + f0(·, u0) + g‖2

L2(RN )(e
−ω̂t + 1) (2.8)

with certain ω̂ ∈ R, c > 0 independent of η ∈ (0, 1] and the initial condition u0.

Proof: Differentiating (2.1) with respect to time we obtain that vη = uηt satisfies{
vηt + ηΛ2kvη + ∆2vη = ∂f

∂u
(x, uη)vη, t > 0, x ∈ RN ,

vη(0, x) = −ηΛ2ku0(x)−∆2u0(x) + f(x, u0(x)), x ∈ RN .
(2.9)

Multiplying the first equation in (2.9) by vη, integrating and using (1.14) we get

1

2

d

dt
‖vη‖2

L2(RN ) + η‖Λkvη‖2
L2(RN ) + ‖∆vη‖2

L2(RN ) −
∫
RN
L(x)|vη|2 ≤ 0.

Writing ‖∆vη‖2
L2(RN ) as ε‖∆vη‖2

L2(RN ) + (1 − ε)‖∆vη‖2
L2(RN ) and using Proposition 2.1 we

obtain
1

2

d

dt
‖vη‖2

L2(RN ) + ε‖∆vη‖2
L2(RN ) + ωε‖vη‖2

L2(RN ) ≤ 0, (2.10)

for ε small enough and some ωε ∈ R. This leads to (2.7) while (2.8) follows from (2.7) and
(2.10). �

Now we obtain some estimates on the solutions uη using the energy (1.3). Hence we first
prove the following.

Proposition 2.5. [12, Lemma 3.1]. If f0 satisfies (1.8), (1.9) then there exist certain
functions f01, f02 such that
i) f0(x, u) = f01(x, u) + f02(x, u), x ∈ RN , u ∈ R,
ii) f01(x, 0) = f02(x, 0) = 0, x ∈ RN ,
iii) f01(x, u) is globally Lipschitz in u ∈ R uniformly for x ∈ RN and
iv) for some c > 0 we have |f02(x, u1)−f02(x, u2)| ≤ c|u1−u2|(|u1|ρ−1 + |u2|ρ−1), u1, u2 ∈ R.

Consequently,

|f01(x, u)| ≤ c|u| and |f02(x, u)| ≤ c|u|ρ for all u ∈ R, x ∈ RN . (2.11)

Using this decomposition, we have
9



Lemma 2.6. If conditions (1.5)–(1.13) hold then
i)

|E(φ)| ≤ c(‖φ‖L2(RN ) + ‖φ‖2
H2(RN ) + ‖φ‖ρ+1

Lρ+1(RN )
), φ ∈ H2(RN) ∩ Lρ+1(RN), (2.12)

for some constant c > 0.
ii) There are constants a1, a2, a3 > 0 such that

a1(‖φ‖2
H2(RN ) + aρ‖φ‖ρ+1

Lρ+1(RN )
)− a2 ≤ E(φ) + a3‖φ‖2

L2(RN ), φ ∈ H
2(RN)∩Lρ+1(RN). (2.13)

Furthermore, (2.13) holds with a3 = 0 provided that (1.17) holds for some ω0 > 0.

Proof: i) Observe that using (2.11) we get

|
∫
RN
F (x, φ)| ≤

∫
RN
|m(x)|φ2 +

∫
RN
|g(x)φ|+ c

2

∫
RN
|φ(x)|2 +

c

ρ+ 1

∫
RN
|φ(x)|ρ+1.

Using now (1.6), Proposition 2.2 and Hölder’s inequality we get (2.12).
ii) From (1.12) we now have

F (x, u) =

∫ u

0

f(x, s) ds ≤ 1

2
C(x)u2 +D(x)|u| − aρ

ρ+ 1
|u|ρ+1, u ∈ R

and hence for φ ∈ H2(RN) ∩ Lρ+1(RN),

2E(φ) ≥
∫
RN
|∆φ|2 −

∫
RN
C(x)φ2 − 2

∫
RN
D(x)|φ|+ 2aρ

ρ+ 1
‖u‖ρ+1

Lρ+1(RN )
.

Using (1.13) and the embedding H2(RN) ↪→ Ls
′
(RN) and taking into account that the norm

‖∆φ‖L2(RN ) + ‖φ‖L2(RN ) is equivalent to the H2(RN) norm we get, with Hölder’s inequality,

2E(φ)− 2aρ
ρ+ 1

‖u‖ρ+1
Lρ+1(RN )

≥
∫
RN
|∆φ|2 −

∫
RN
C(x)φ2 − 2‖D‖Ls(RN )‖φ‖Ls′ (RN )

≥
∫
RN
|∆φ|2 −

∫
RN
C(x)φ2 − c

ε
‖D‖2

Ls(RN ) −
ε

2
(‖∆φ‖2

L2(RN ) + ‖φ‖2
L2(RN ))

=
ε

2
‖∆φ‖2

L2(RN ) +

∫
RN

(
(1− ε)|∆φ|2 − C(x)φ2

)
− c

ε
‖D‖2

Ls(RN ) −
ε

2
‖φ‖2

L2(RN ).

Applying Proposition 2.1 with ε > 0 small enough we obtain

2E(φ)− 2aρ
ρ+ 1

‖φ‖ρ+1
Lρ+1(RN )

≥ ε

2
‖∆φ‖2

L2(RN ) + ω‖φ‖2
L2(RN ) −

c

ε
‖D‖2

Ls(RN )

with some ω ∈ R, which is positive if ω0 in (1.17) is positive. The proof now follows easily. �

Hence for the solutions of (2.1) we have

Lemma 2.7. Assume (1.5)–(1.13) and u0 ∈ H4k(RN). Then the solution of (2.1) satisfy,
for t ≥ 0,

a1

(
‖uη(t)‖2

H2(RN ) + aρ‖uη(t)‖ρ+1
Lρ+1(RN )

)
≤ E(u0) +

η

2
‖Λku0‖2

L2(RN ) + a2 + a3‖uη(t)‖2
L2(RN ),

where a1, a2, a3 are the constants from Lemma 2.6.
10



Proof: Multiplying (2.1) by uηt we obtain

d

dt
(E(uη(t)) +

η

2
‖Λkuη(t)‖2

L2(RN )) = −‖uηt (t)‖2
L2(RN ) ≤ 0. (2.14)

Integrating (2.14) we have

E(uη(t)) +
η

2
‖Λkuη(t)‖2

L2(RN ) ≤ E(u0) +
η

2
‖Λku0‖2

L2(RN ). (2.15)

Using now (2.13) we get the result. �

2.2. Estimates away from zero. Now we derive better estimates on time intervals away
from t = 0.

Lemma 2.8. Assume (1.5)–(1.13) and ‖u0‖L2(RN ) ≤ R. Then for any 0 < τ < T the
solution of (2.1) satisfies

‖uη(t)‖2
H2(RN ) + aρ‖uη(t)‖ρ+1

Lρ+1(RN )
≤M3(R, τ, T ) τ ≤ t ≤ T, (2.16)

where M3(R, τ, T ) does not depend on η ∈ (0, 1].
If ω0 in (1.17) is positive then the bound above can be taken independent of T , i.e. M3 =

M3(R, τ).

Proof: Using (2.4) and, for 0 < t+ τ ≤ T , integrating (2.6) in the interval (t, t+ τ), we get∫ t+τ

t

η‖Λkuη‖2
L2(RN ),

∫ t+τ

t

‖uη‖2
H2(RN ), aρ

∫ t+τ

t

‖uη‖ρ+1
Lρ+1(RN )

≤ c1(R, T ), (2.17)

for some constant c1(R, T ) > 0 independent of t ∈ [0, T −τ ] and η ∈ (0, 1]. Using then (2.12)
and (2.17) we have ∫ t+τ

t

(E(uη) +
η

2
‖Λkuη‖2

L2(RN )) ≤ c2(R, T ) (2.18)

with c2(R, T ) independent of η ∈ (0, 1] and t ∈ [0, T − τ ].
Now, for s ∈ (t, t+ τ) integrating in (2.14) yields

E(uη(t+ τ)) +
η

2
‖Λkuη(t+ τ)‖2

L2(RN ) ≤ E(uη(s)) +
η

2
‖Λkuη(s)‖2

L2(RN ) (2.19)

and integrating (2.19) with respect to s ∈ (t, t+ τ) and using (2.18) we conclude that

E(uη(t+ τ)) +
η

2
‖Λkuη(t+ τ)‖2

L2(RN ) ≤
c2(R, T )

τ
for t ∈ [0, T − τ ]. (2.20)

Thus, from this and (2.13) and (2.4) we have

a1(‖uη(t)‖2
H2(RN ) + aρ‖uη(t)‖ρ+1

Lρ+1(RN )
) ≤ c2(R, T )

τ
+ a2 + a3M1(R, T ) τ ≤ t ≤ T

and we get the result.
Observe that if ω0 in (1.17) is positive, then the estimate in (2.4) is independent of T and

so are the bounds in (2.17), (2.18) and (2.20). �

Lemma 2.9. Assume (1.5)–(1.13) and ‖u0‖L2(RN ) ≤ R. Then for any 0 < τ < T the
solution of (2.1) satisfies

‖uηt (t)‖2
L2(RN ) ≤M4(R, τ, T ), τ ≤ t ≤ T, (2.21)
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and

‖uηt ‖2
L2((τ,T ),H2(RN )) ≤M5(R, τ, T ) (2.22)

where M4(R, τ, T ) and M5(R, τ, T ) are independent of η ∈ (0, 1].
Moreover, if ω0 in (1.17) is positive, then M4 = M4(R, τ) and M5 = M5(R, τ).

Proof: We integrate in (2.14) and use (2.20) in the right hand side and (2.13) and (2.4) in
the left hand side to get∫ t+τ

t

‖uηt ‖2
L2(RN ) ≤ c1(R, τ, T ), τ ≤ t ≤ t+ τ ≤ T. (2.23)

Now, fix s ∈ (t, t+ τ), integrate in (2.10) in (s, t+ τ) neglecting the Laplacian term, and
use (2.23) to obtain

‖uηt (t+ τ)‖2
L2(RN ) ≤ ‖u

η
t (s)‖2

L2(RN ) + c2(R, τ, T ).

We now integrate in s ∈ (t, t+ τ) and use (2.23) again to obtain

‖uηt (t+ τ)‖2
L2(RN ) ≤

(1 + τ)

τ
c2(R, τ, T ), τ ≤ t ≤ T.

Since τ and T are arbitrary, we get (2.21). Integrating again in (2.10) and keeping the
Laplacian term, we get (2.22).

Finally, if ω0 in (1.17) is positive, the estimate in (2.20) and (2.23) are independent of T
and so are (2.21) and (2.22). �

Remark 2.10. If we assume that f does not depend on x, then L in (1.14) does not depend
on x either, and then after multiplying (2.1) by ∆uη and integrating over RN we would get
a term of the form

−
∫
RN
f(uη)∆uη =

∫
RN
f ′(uη)|∇uη|2 ≤ L

∫
RN
|∇uη|2

and we would get from (2.1)∫
RN
|∇∆uη|2 ≤

∫
RN
uηt∆u

η−
∫
RN
f(uη)∆uη ≤ 1

2
(‖uηt ‖2

L2(RN ) +‖∆uη‖2
L2(RN ))+L‖∇uη‖2

L2(RN ).

Using (2.16) and (2.21) we could conclude that, given ‖u0‖L2(RN ) ≤ R and 0 < τ < T ,

‖uη‖2
H3(RN ) ≤M6(R, τ, T ).

In particular, this gives an L∞(RN) bound, independent of η, on the solutions of (2.1), for
every ρ > ρc in dimension N ≤ 5.

2.3. Existence, uniqueness and regularity of approximate solutions. For the ex-
istence, uniqueness and regularity results for (2.1), we use [23, 29]. For this, recall that
Λ = −∆+Id is a self-adjoint positive definite operator in L2(RN) and so is Λ2k = (−∆+Id)2k

for every integer k > 0 (see [23, § 1.4, 1.6]). Thus, Λ2k is a negative generator of a C0 analytic
semigroup in X := L2(RN). The fractional power spaces of this operator are given by

Xα = D((Λ2k)α) = D(Λ2kα) = H4kα(RN) for each α ∈ (0, 1), k ∈ N,
(see [10, (1.3.48), (1.3.62)]); in particular

X
1
2 = H2k(RN).

12



We now fix k ≥ 2 large enough such that

2k − N

2
> 0, (2.24)

in which case
H2k(RN) ↪→ L∞(RN). (2.25)

Hence, for η > 0 Aη := ηΛ2k, is still positive selfadjoint with the same fractional power
spaces as above.

Thus, (2.1) can be written as an abstract problem{
duη

dt
+ Aηu

η = F(uη) := −∆2uη + f(·, uη), t > 0,

uη(0) = u0

(2.26)

and we prove the following result.

Proposition 2.11. Assume (1.5)–(1.11) and (2.24). Then,
i) given u0 ∈ H2k(RN), there exists the unique global mild solution uη of (2.1) which satisfies
uη ∈ C([0,∞), H2k(RN))∩C((0,∞), H4k(RN))∩C1((0,∞), H4β(RN)) for any β ∈ [0, 1) and
uη satisfies (2.26).
ii) If, in addition, u0 ∈ H4k(RN) then also uη ∈ C([0,∞), H4k(RN))) ∩ C1([0,∞), L2(RN)).
iii) Actually, if u0 ∈ H4k(RN) then vη = duη

dt
satisfies{

dvη

dt
+ Aηv

η = F ′(uη)vη := −∆2vη + ∂f
∂uη

(·, uη)vη, t > 0,

vη(0) = −Aηu0 + F(u0).
(2.27)

Proof: i) Due to (2.25) and assumptions on f , the nonlinear term F in (2.26) is Lipschitz
continuous map on bounded sets from H2k(RN) into L2(RN). Hence local existence part
for (2.26) follows as in [23] (see also [10, Lemma 2.2.1 and Corollary 2.3.1]). The solution
actually exists for all t ≥ 0 because (2.15) and Lemmas 2.6, 2.3 imply that H2k(RN)-norm
of uη does not blow up in a finite time.

For part ii) we refer the reader to [33, Theorem I.1].
iii) To obtain (2.27) observe that, by (1.11) and (2.25), F is of the class C1(H2k(RN), L2(RN))
and its Fréchet derivative, F ′(ϕ)h = −∆2h+m(·)h+ ∂f0

∂ϕ
(·, ϕ)h, ϕ, h ∈ H2k(RN), is Lipschitz

continuous on bounded sets from H2k(RN) into L(H2k(RN), L2(RN)).
Therefore, F(uη(·)) is C1((0,∞), L2(RN)) and from the proof of Corollary 2.5, page 107

in [29] we get that vη = uηt is a mild solution of (2.27), that is

vη(t) = e−Aηt
(
− Aηu0 + F(u0)

)
+

∫ t

0

e−Aη(t−s)F ′(uη(s))vη(s)ds, t > 0.

Since, from i), duη

dt
(t) is locally Hölder continuous from (0,∞) into H2k(RN) (see [23,

Theorem 3.5.2]), using the Lipschitz property of F ′, we obtain that F ′(uη(s))vη(s) is locally
Hölder continuous from (0,∞) into L2(RN). Consequently, vη is a strong solution of (2.27),
see [23, Lemma 3.5.1]. �

Remark 2.12. Note that the regularity of uη in Proposition 2.11 implies that all estimates
in Lemmas 2.3, 2.4 2.7, 2.8 and 2.9 are valid.

3. Limit solutions

Here we construct a unique global solution of (1.1) as a limit of solutions of (2.1) as η → 0.
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3.1. Smooth initial conditions. We start from the following auxiliary lemma.

Lemma 3.1. Assume (1.5)–(1.14) and (2.24). Suppose also that u0 ∈ H4k(RN) and uη are
the solutions of (2.26) through u0 as in Proposition 2.11.

Then, given a sequence of parameters η → 0+, there is a subsequence of {uη}, which for
simplicity we denote the same, and there is a certain function u such that, for any T > 0,

u ∈ L∞((0, T ), H2(RN) ∩ Lρ+1(RN)) ∩H1((0, T ), H2(RN)), (3.1)

and
i)

uη → u

weakly in H1((0, T ), H2(RN)), in Lρ+1((0, T ), Lρ+1(RN)) and weak-∗ in L∞((0, T ), H2(RN)∩
Lρ+1(RN)) .
ii)

uηt → ut

weak-∗ in L∞((0, T ), L2(RN)).
In particular uη → u in C([0, T ], Hs

loc(RN)), for any s < 2 and uη(t, x) → u(t, x) a.e. on
RN for each t ∈ [0, T ] as well as for a. e. (t, x) ∈ [0, T ]× RN .

Proof: The weak convergence above comes from the bounds in Lemmas 2.3 and 2.4, which
are uniform with respect to η. In fact the uniform bounds on the time derivatives imply
the equicontinuity of uη with values in L2(RN). This combined with the uniform bounds in
H2(RN) and interpolation, gives the equicontinuity of uη with values inHs(RN) for any s < 2.
Finally, since the embedding H2(RN) ⊂ Hs

loc(RN) is compact, Arzelà-Ascoli arguments give
the convergence in C([0, T ], Hs

loc(RN)), for any s < 2.
Finally, using an increasing sequence of balls in RN and a diagonal argument, we obtain

the a.e. convergence in the statement. �

With this, we can prove the following.

Theorem 3.2. Assume (1.5)–(1.14). Then for each u0 ∈ H4k(RN) there exists a unique
function such that for any T > 0,

u = u(·, u0) ∈ L∞((0, T ), H2(RN) ∩ Lρ+1(RN)) ∩H1((0, T ), H2(RN)), u(0) = u0,

and solving (1.1) in the sense that∫
RN

(du
dt
v + ∆u∆v − f(x, u)v

)
= 0 (3.2)

holds for a.e. t > 0 with any v ∈ H2(RN) ∩ Lρ+1(RN), or equivalently, for any T > 0,

du

dt
+ ∆2u− f(·, u) = 0 in L

ρ+1
ρ ((0, T ), (H2(RN) ∩ Lρ+1(RN))′). (3.3)

Moreover, for each u01, u02 ∈ H4k(RN) and T > 0 the solutions above satisfy Lipschitz
condition

‖u(·, u01)− u(·, u02)‖C([0,T ],L2(RN ))∩L2((0,T ),H2(RN )) ≤ c(T )‖u01 − u02‖L2(RN ), (3.4)

where c(T ) is a positive constant independent of initial data.
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Proof: Note that from Proposition 2.5 and the estimates in Lemmas 2.3 and 2.4 we have that

f01(·, uη) is bounded in L∞((0, T ), L2(RN)) and f02(·, uη) is bounded in L∞((0, T ), L
ρ+1
ρ (RN))

uniformly with respect to η ∈ (0, 1]. Hence we can assume that f01(·, uη) converges weakly

to F1 in L2((0, T )× RN) and f02(·, uη) converges weakly to F2 in L
ρ+1
ρ ((0, T )× RN).

Also, from Lemma 3.1 f0j(·, uη)→ f0j(·, u) a.e. on [0, T ]×RN for j = 1, 2, and then Lemma
4.8 in [24], gives that Fj = f0j(·, u) a.e. on [0, T ]× RN for j = 1, 2 and f01(·, uη)→ f01(·, u)

weakly in L2((0, T ), L2(RN)) and f02(·, uη)→ f02(·, u) weakly in L
ρ+1
ρ ((0, T ), L

ρ+1
ρ (RN)).

On the other hand weak continuity properties of linear continuous operators give that
∆2uη → ∆2u and m(x)uη → m(x)u weakly in L2((0, T ),

(
H2(RN)

)′
); see e.g. page 204, [30].

So it remains to prove that ηΛkuη → 0 in a weak sense. For this, take a very smooth
function φ ∈ L2((0, T ), H4k(RN)) and then

η

∫ T

0

∫
RN
uηΛ2kφ→ 0

as η → 0.
Therefore, passing to the limit in (2.1) we get that the limit function satisfies (3.3), which

is equivalent to (3.2) by e.g. Lemma 7.4 in [30].
To prove the uniqueness, observe that if for u01, u02 ∈ H4k(RN) and T > 0 we consider

functions u1 = u(·, u01), u2 = u(·, u02) satisfying (3.1) and (3.3) then V (t) = u1(t) − u2(t)

satisfies dV
dt

+ ∆2V = (f(x, u1(t)) − f(x, u2(t))) in L
ρ+1
ρ ((0, T ), (H2(RN) ∩ Lρ+1(RN))′) and

V ∈ Lρ+1((0, T ), H2(RN) ∩ Lρ+1(RN)). Hence∫
RN

(dV
dt

(t)V (t) + |∆V (t)|2 − (f(x, u1(t))− f(x, u2(t)))V (t)
)

= 0

for a.e. t > 0. From (1.14) we then have, for ε > 0,

1

2

d

dt
‖V ‖2

L2(RN ) + ε‖∆V ‖2
L2(RN ) +

∫
RN

(
(1− ε)|∆V |2 − L(x)|V |2

)
≤ 0

and using Proposition 2.1 we obtain, for some and ωε ∈ R,

1

2

d

dt
‖V ‖2

L2(RN ) + ε‖∆V ‖2
L2(RN ) + ωε‖V ‖2

L2(RN ) ≤ 0 (3.5)

for a.e. t > 0. Dropping the middle term above, Gronwall’s lemma gives

‖V (t)‖L2(RN ) ≤ c(T )‖V (0)‖L2(RN ), 0 ≤ t ≤ T.

Using this and integrating in (3.5) leads to

ε

∫ T

0

‖∆V ‖2
L2(RN ) ≤ c(T )‖V (0)‖2

L2(RN )

which proves (3.4) and, in particular, the claim on uniqueness. �

Remark 3.3. i) Observe that the uniqueness in Theorem 3.2 implies that the whole family
of approximate solutions uη converges to u as η → 0+ as in Lemma 3.1.
ii) Note that if we had that

ut ∈ Lρ+1
loc ((0, T ), Lρ+1(RN))

15



then we would get, taking ut as a test function in (3.3), the energy estimate for the limit
equation

d

dt
(E(u(t)) + ‖ut(t)‖2

L2(RN ) = 0.

In fact, from Proposition 3.11 below, in the critical case we have

ut ∈ Lρ+1
loc ((0, T ), H2(RN)),

and we get the energy as above; see see Proposition 3.11 below.

We also have

Corollary 3.4. For u0 ∈ H4k(RN), with ‖u0‖L2(RN ) ≤ R and T > 0, the solutions of (1.1)
in Theorem 3.2 satisfy the following estimates, for 0 ≤ t ≤ T ,
i)

‖u(t)‖2
L2(RN ) ≤M1(R, T )

‖u‖2
L2((0,T ),H2(RN )) + aρ‖u‖ρ+1

Lρ+1((0,T ),Lρ+1(RN ))
≤M2(R, T )

ii)

‖ut(t)‖2
L2(RN ) ≤ ‖(−∆2 +m)u0 + f0(·, u0) + g‖2

L2(RN )e
−ω̂t

‖ut‖2
L2((0,t),H2(RN )) ≤ c‖(−∆2 +m)u0 + f0(·, u0) + g‖2

L2(RN )(e
−ω̂t + 1),

for some ω̂ ∈ R.
iii)

‖u‖L∞((0,T ),H2(RN )∩Lρ+1(RN )) ≤ c
(
E(u0) +M1(R, T ) + 1

)
.

Also, for 0 < τ < T , they satisfy
iv)

‖u‖L∞((τ,T ),H2(RN )∩Lρ+1(RN )) ≤M3(R, τ, T )

v)

‖ut‖2
L∞((τ,T ),L2(RN )) ≤M4(R, τ, T )

‖ut‖2
L2((τ,T ),H2(RN )) ≤M5(R, τ, T ).

Additionally, if (1.17) holds for some ω0 > 0 we have

‖u(t)‖2
L2(RN ) ≤ ‖u0‖2

L2(RN )e
−ωt +M(1− e−ωt)

for some M,ω > 0 and in the bounds above M1,M3,M4 and M5 can be taken independent
of T .

Remark 3.5. If we have an estimate as in Remark 2.10, then weak lower semicontinuity
will give again that given ‖u0‖L2(RN ) ≤ R and 0 < τ < T ,

‖u‖2
H3(RN ) ≤M6(R, τ, T ).

which gives an L∞(RN) bound, independent of η, for every ρ > ρc in dimension N ≤ 5.

Proposition 3.6. For u0 ∈ H4k(RN) the solution of (1.1) in Theorem 3.2 satisfies the
variation of constants formula

u(t) = e−∆2tu0 +

∫ t

0

e−∆2(t−s)f(·, u(s))ds, t > 0. (3.6)

16



Proof: Letting X = H2(RN) ∩ Lρ+1(RN), we have that f(·, u(·)) ∈ L
ρ+1
ρ ((0, T ),X ′) ↪→

L1((0, T ),X ′) and (3.2) implies

d

dt
〈u, v〉X ′,X + 〈u,∆2v〉X ′,X − 〈f(·, u), v〉X ′,X = 0

for a.e. t > 0 whenever v ∈ H4(RN) ∩ Lρ+1(RN).

On the other hand, ∆2 generates a C0 analytic semigroup {e−∆2t} in H2(RN) and in

Lρ+1(RN) (see [12]). In particular {e−∆2t} is a C0-semigroup in X = H2(RN) ∩ Lρ+1(RN)
whose generator is the realization of −∆2 in X . Consequently, by [29, Corollary 1.10.6],

{e−∆2t} is also a C0 semigroup in X ′ (as the the adjoint semigroup generated by the adjoint
infinitesimal operator).

Therefore the results in [7] gives that u satisfies (3.6). �

3.2. Initial conditions in L2(RN). We now obtain limit solutions for initial data in L2(RN).

Theorem 3.7. Assume (1.5)–(1.14).
If u0 ∈ L2(RN) then for any sequence {u0n} ⊂ H4k(RN) converging to u0 in L2(RN),

the sequence of solutions of (1.1), {u(t;u0n)}, as in Theorem 3.2, is a Cauchy sequence in
C([0, T ], L2(RN)) ∩ L2((0, T ), H2(RN)) for every T > 0.
i) The limit function u(·;u0) is independent of the sequence {u0n} ⊂ H4k(RN) and satisfies

u ∈ C([0, T ], L2(RN)) ∩ L2((0, T ), H2(RN)), T > 0,

and for all u01, u02 ∈ L2(RN) and T > 0,

‖u(·, u01)− u(·, u02)‖C([0,T ],L2(RN ))∩L2((0,T ),H2(RN )) ≤ c(T )‖u01 − u02‖L2(RN ),

for some c(T ) > 0. In particular, u(t;u0) is continuous in L2(RN) with respect to (t, u0) ∈
[0,∞)× L2(RN).
ii) For any T > τ > 0

u(·, u0) ∈ L∞((τ, T ), H2(RN) ∩ Lρ+1(RN)) ∩H1((τ, T ), H2(RN))

and satisfies (1.1) in the sense that∫
RN

(du
dt
v + ∆u∆v − f(x, u)v

)
= 0

holds for a.e. t > 0 with any v ∈ H2(RN) ∩ Lρ+1(RN), or equivalently,

du

dt
+ ∆2u− f(·, u) = 0 in L

ρ+1
ρ

loc ((0,∞), (H2(RN) ∩ Lρ+1(RN))′).

Also, for any τ > 0,

u(t) = e−∆2(t−τ)u(τ) +

∫ t

τ

e−∆2(t−s)f(·, u(s))ds, t > τ

and u(τ)→ u0 in L2(RN) as τ → 0.
iii) Furthermore, if u0 ∈ H2(RN) ∩ Lρ+1(RN) then

u : [0, T ]→ H2(RN) ∩ Lρ+1(RN) is weakly continuous.

iv) Finally, estimates in Corollary 3.4 hold as follows. Estimates i), iv) and v) hold for
u0 ∈ L2(RN), estimate ii) holds if u0 ∈ H4(RN) ∩ Lρ+1(RN) and estimate iii) holds if
u0 ∈ H2(RN) ∩ Lρ+1(RN).
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Proof: Part i) follows from (3.4) while the first part of ii) follows from estimates iv) and v)
in Corollary 3.4 and weak lower semicontinuity. Also, from (3.3) we have for un = u(·;un0 )
and 0 < τ < T ,

dun

dt
+ ∆2un − f(·, un) = 0 in L

ρ+1
ρ ((τ, T ), (H2(RN) ∩ Lρ+1(RN))′).

Now observe that the estimates i), iv) and v) in Corollary 3.4 for un are uniform in n ∈ N
and then as in the proof of Theorem 3.2 we have unt → ut weak-∗ in L∞((τ, T ), L2(RN)) and
weakly in L2((τ, T ), H2(RN)), f01(·, un)→ f01(·, u) weakly in L2((τ, T ), L2(RN)), f02(·, un)→
f02(·, u) weakly in L

ρ+1
ρ ((τ, T ), L

ρ+1
ρ (RN)), ∆2un → ∆2u and m(x)un → m(x)u weakly in

L2((0, T ),
(
H2(RN)

)′
). Hence passing to the limit we get

du

dt
+ ∆2u− f(·, u) = 0 in L

ρ+1
ρ

loc ((0,∞), (H2(RN) ∩ Lρ+1(RN))′).

Also, using Proposition 3.6 we get the rest.
Part iii) follows from continuity of u in L2(RN) and [31, Theorem 2.1]; see also Lemma

3.3, page 72 in [32].
Finally, part iv) follows from weak lower semicontinuity of the norms. �

Remark 3.8. i) Note that if we had that

ut ∈ Lρ+1
loc ((0, T ), Lρ+1(RN))

then we would get, taking ut as a test function in (3.3), the energy estimate for the limit
equation

d

dt
(E(u(t)) + ‖ut(t)‖2

L2(RN ) = 0.

In fact, from Proposition 3.11 below, in the critical case we have

ut ∈ Lρ+1
loc ((0, T ), H2(RN)),

and we get the energy as above; see Proposition 3.11 below.

Remark 3.9. Note that for reaction diffusion equations as in (1.2), using maximum prin-
ciples, one obtains that u ∈ L∞((τ, T ), L∞(RN)). Hence f0(·, u) ∈ L∞((τ, T ), L2(RN)) and
much further regularity of u follows by the variation of constants formula, see [3].

Also, for (1.1), if ρ is subcritical, we also obtain that u ∈ L∞((τ, T ), L∞(RN)), see
[13]. Here we are able to obtain only that u ∈ L∞((τ, T ), Lρ+1(RN)). Hence f02(·, u) ∈
L
ρ+1
ρ ((τ, T ), L

ρ+1
ρ (RN)) and the larger the ρ the worse is the estimate, since ρ+1

ρ
→ 1 as

ρ → ∞. Also, since ρ is critical or supercritical using u ∈ L∞((τ, T ), H2(RN)) and Sobolev
embedding does not give better estimates either.

To end this section we prove that in the critical case, ρ = N+4
N−4

, the solution of (1.1)

constructed in Theorem 3.2 for initial data in H4k(RN) and in Theorem 3.7, for initial data
in H2(RN), coincide with the solutions constructed in [12]. This, in particular, shows that in
the assumptions of the theorems above, the solutions of the critical case are globally defined.
This extends the results obtained in [13].

We first recall the local existence-uniqueness result established in [12, Theorem 1.4].
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Proposition 3.10. Assume (1.5)–(1.11).
If ρ = N+4

N−4
then (1.1) is locally well posed in H2(RN). Furthermore, the solution u of

(1.1) through u0 ∈ H2(RN) satisfies

u ∈ C([0, τu0), H
2(RN)) ∩ C((0, τu0), H

4(RN)) ∩ C1((0, τu0), L
2(RN)), (3.7)

where [0, τu0) is the maximal interval of existence of this solution.
Moreover u ∈ C1((0, τu0), H

4θ(RN)) for any θ < 1.

Proof: The existence of solution and (3.7) come straight from [12, Theorem 1.4].
The extra C1 regularity comes from observing that in the proof of that result one actually

has that the nonlinear term is Lipschitz on bounded sets from H2+ε(RN) into L2(RN) for
some ε > 0. Hence, since u(τ) ∈ H2+ε(RN) for any τ > 0, then the smoothing effect of the
equation gives the result, see e.g. Theorem 3.5.2, page 71, in [23] and [10]. �

Then we have

Proposition 3.11. Assume (1.5)–(1.14) and suppose that ρ = N+4
N−4

.

i) For u0 ∈ H4k(RN), with k as in (2.24), the solutions of (1.1) as in Theorem 3.2 and as
in Proposition 3.10 coincide. In particular, τu0 =∞ in Proposition 3.10.
ii) For u0 ∈ H2(RN), the solutions of (1.1) in Theorem 3.7 and as in Proposition 3.10
coincide. In particular, τu0 =∞ in Proposition 3.10.

In either case above, the solution of (1.1) satisfies the energy equation

d

dt
(E(u(t)) + ‖ut(t)‖2

L2(RN ) = 0, t > 0.

Proof: For u0 as in the two cases in the statement, the solution in Theorems 3.2 or 3.7 and
the solution in Proposition 3.10 all satisfy (3.2) and (3.3) for t > 0. Hence we can proceed
as in the proof of Theorem 3.2 to obtain (3.5) and from here (3.4). This implies in turn that
all solution coincide.

Finally the energy estimate follows as in Remarks 3.3 and 3.8, using the regularity of the
solution obtained above. �

4. Semigroup of limit solutions in L2(Rn) and a global attractor

As a consequence of Theorem 3.7 we have the nonlinear semigroup {S(t) : t ≥ 0} associated
with (1.1) in L2(RN); namely

S(t) : L2(RN)→ L2(RN), S(t)u0 = u(t;u0) for t ≥ 0, u0 ∈ L2(RN), (4.1)

where u(t;u0) is as in Theorem 3.7. In particular we have thus proved Theorem 1.1.
We also have the following.

Lemma 4.1. Assume (1.5)–(1.14). Then,
i) for any t0 > 0 and any ball B in L2(RN) we have that S(t0)B is bounded in H2(RN) ∩
Lρ+1(RN),
ii) for each t > 0, S(t) leaves H2(RN) ∩ Lρ+1(RN) invariant and {S(t) : t ≥ 0} restricted to
H2(RN) ∩ Lρ+1(RN) is a closed semigroup in H2(RN) ∩ Lρ+1(RN).

Proof: Part i) is a consequence of estimate iv) in Corollary 3.4 (see Theorem 3.7 iii)-iv)).
ii) The invariance is a consequence of part iii) in Theorem 3.7. For the closeness, if H2(RN)∩
Lρ+1(RN) 3 u0n → u0 in H2(RN)∩Lρ+1(RN), t > 0 and S(t)u0n → v in H2(RN)∩Lρ+1(RN),
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then by continuity in L2(RN), S(t)u0n converges in L2(RN) both to S(t)u0 and to v which
yields that v = S(t)u0. �

We also have the following.

Lemma 4.2. For every 0 < τ < T < ∞, the semigroup S(t) is continuous from L2(RN)
into H2(RN), uniformly on [τ, T ].

Proof: Consider u0n → u0 in L2(RN) and un(t) = S(t)u0n, u(t) = S(t)u0. From Theorem 3.7
we have that V n(t) = un(t)−u(t) satisfies the equation dV n

dt
+∆2V n = (f(x, un(t))−f(x, u(t)))

in L
ρ+1
ρ ((τ, T ), (H2(RN) ∩ Lρ+1(RN))′), and V n ∈ Lρ+1((τ, T ), H2(RN) ∩ Lρ+1(RN)). Thus,∫
RN

(dV n

dt
(t)V n(t) + |∆V n(t)|2 − (f(x, u1(t))− f(x, u2(t)))V n(t)

)
= 0 a.e. t > 0.

From (1.14) we then have, for ε > 0,∫
RN

(dV n

dt
(t)V n(t) + ε‖∆V n(t)‖2

L2(RN ) +

∫
RN

(
(1− ε)|∆V n(t)|2 − L(x)|V n(t)|2

)
≤ 0

and using Proposition 2.1 we obtain, for some and ωε ∈ R,∫
RN

(dV n

dt
(t)V n(t) + ε‖∆V n(t)‖2

L2(RN ) + ωε‖V n(t)‖2
L2(RN ) ≤ 0

for a.e. t > 0. Hence,

ε‖∆V n(t)‖2
L2(RN ) ≤ −ωε‖V

n(t)‖2
L2(RN ) + ‖dV

n

dt
(t)‖L2(RN )‖V n(t)‖L2(RN ) a.e. t > 0.

By part iv) in Theorem 3.7 the right hand side above is bounded above, in [τ, T ], by a
multiple of ‖V n(t)‖L2(RN ) which is a continuous function of t, as is the left hand side above.

Therefore, by part i) in Theorem 3.7 we have ‖V n(t)‖L2(RN ) → 0, as n → ∞, uniformly
on [τ, T ], and therefore ‖V n(t)‖H2(RN ) → 0, as n→∞, uniformly on [τ, T ] as well. �

In what follows we show that if solutions of the linear problem (1.16) are asymptotically
decaying in L2(RN) the semigroup has strong dissipativeness properties. In particular, there
exists a global attractor in the sense of [22].

Lemma 4.3. Assume (1.5)–(1.14) and suppose that (1.17) holds for some ω0 > 0. Then
i) there exists a ball in L2(RN) absorbing bounded sets in L2(RN) under {S(t) : t ≥ 0}; that
is, there exists R0 > 0 such that for any bounded set B ⊂ L2(RN) of initial data of (1.1) and
a certain TB ≥ 0 we have

‖S(t)u0‖L2(RN ) ≤ R0 for all t ≥ TB and u0 ∈ B. (4.2)

ii) there exists a bounded subset B0 of H2(RN) ∩ Lρ+1(RN) absorbing bounded subsets of
L2(RN), that is

S(t)B ⊂ B0 for all t ≥ tB and u0 ∈ B
whenever B is bounded in L2(RN).

Thus, for each B bounded in L2(RN) the positive orbit γ+(B) = ∪t≥0S(t)B is eventually
bounded in H2(RN) ∩ Lρ+1(RN).
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Proof: From Theorem 3.7 the solutions satisfy Corollary 3.4 part v) and so we have

‖u(t)‖2
L2(RN ) ≤ ‖u0‖2

L2(RN )e
−ωt + c1,

with ω > 0, which proves (4.2).
ii) Now Lemma 4.1 and part i) gives part ii). In fact, from i), the ball of radius R0 in L2(RN),
BR0 , is absorbing. Thus, B0 = S(1)BR0 is bounded and absorbing in H2(RN)∩Lρ+1(RN). �

The next result will imply the asymptotic compactness of the semigroup in L2(RN).

Lemma 4.4. Assume (1.5)–(1.14) and suppose that (1.17) holds with some ω0 > 0.
If B is bounded in L2(RN) then for any ε > 0 there exist t0 > 0 and k0 > 0 such that

sup
u0∈B

sup
t≥t0
‖u(t;u0)‖L2({|x|>k0}) < ε (4.3)

sup
u0∈B

sup
t≥t0
{‖u(t;u0)‖Lρ+1({|x|>k0}), ‖u(t;u0)‖H2({|x|>k0})} < ε (4.4)

Consequently, from each sequence of the form {S(tn)u0n}, where {u0n} ⊂ B and tn →∞,
one can choose a subsequence convergent in L2(RN)-norm.

Proof: We fix a smooth θ0 : [0,∞)→ [0, 1] such that θ0(z) = 0 for z ∈ [0, 1] and θ0(z) = 1

for z ≥ 2. We let θ(z) = θ4
0(z) for z ≥ 0 and define φk(x) = θ

( |x|2
k2

)
for each x ∈ RN and

k ∈ N. We also fix B bounded in L2(RN).
Using the test function v = uφk we obtain

1

2

d

dt

∫
RN
u2φk +

∫
RN
|∆u|2φk = −

∫
RN

∆u(u∆φk + 2∇φk · ∇u) +

∫
RN
uf(x, u)φk. (4.5)

Thanks to Lemma 4.3 ii) and properties of cut-off functions there exists a constant c > 0
such that

−
∫
RN

∆u(u∆φk + 2∇φk · ∇u) ≤ c

k
, t ≥ tB.

Since ∆(uφ
1
2
k ) = φ

1
2
k∆u + 2∇u · ∇(φ

1
2
k ) + u∆(φ

1
2
k ), using Lemma 4.3 ii) we also obtain that

for each ν > 0 there is a certain constant, cν , such that∫
RN
|∆u|2φk =

∫
RN

(
∆(uφ

1
2
k )− 2∇u · ∇(φ

1
2
k )− u∆(φ

1
2
k )
)2 ≥

∫
RN

(1− ν

2
)|∆(uφ

1
2
k )|2 − cν

k
.

On the other hand from (1.12) we get∫
RN
uf(x, u)φk ≤

∫
RN
C(x)(uφ

1
2
k )2 +

∫
RN
D(x)|u|φk − aρ

∫
RN
|u|ρ+1φk

and hence (4.5) transforms into

1

2

d

dt

∫
RN
u2φk +

1

2

∫
RN
|∆u|2φk +

1

2
(1− ν

2
)

∫
RN
|∆(uφ

1
2
k )|2 + aρ

∫
RN
|u|ρ+1φk

≤
∫
RN
C(x)(uφ

1
2
k )2 +

∫
RN
D(x)|u|φk +

cν
2k
.

(4.6)

We next have
∫
RN D(x)|u|φk ≤ ‖Dφ

1
2
k ‖Ls(RN )‖uφ

1
2
k ‖Ls′ (RN ) which due to (1.13) and the embed-

ding H2(RN) ↪→ Ls
′
(RN) can be bounded by c̃‖Dφ

1
2
k ‖Ls(RN )(‖∆(uφ

1
2
k )‖L2(RN ) +‖uφ

1
2
k ‖L2(RN )).
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Hence we get∫
RN
D(x)|u|φk ≤

ν

4
(‖∆(uφ

1
2
k )‖2

L2(RN ) + ‖uφ
1
2
k ‖

2
L2(RN )) +

c̃2

ν
‖Dφ

1
2
k ‖

2
Ls(RN ). (4.7)

From (4.6)–(4.7) we have

1

2

d

dt
‖uφ

1
2
k ‖

2
L2(RN ) +

1

2

∫
RN
|∆u|2φk + aρ

∫
RN
|u|ρ+1φk +

1

2

∫
RN

(
(1− ν)|∆(uφ

1
2
k )|2 − 2C(x)(uφ

1
2
k )2
)

≤ ν

4
‖uφ

1
2
k ‖

2
L2(RN ) +

c̃2

ν
‖Dφ

1
2
k ‖

2
Ls(RN ) +

cν
2k

and using Proposition 2.1 with ν > 0 small enough so that ω(ν)− ν
2

=: ω > 0 we infer that

1

2

d

dt
‖uφ

1
2
k ‖

2
L2(RN ) +

1

2

∫
RN
|∆u|2φk + aρ

∫
RN
|u|ρ+1φk +

ω

2
‖uφ

1
2
k ‖

2
L2(RN ) ≤

c̃2

ν
‖Dφ

1
2
k ‖

2
Ls(RN ) +

cν
2k
.

(4.8)

In particular, zk(t) := ‖u(t)φ
1
2
k ‖2

L2(RN ) satisfies the differential inequality z′k(t)+ωzk(t) ≤ ck,

where ω > 0 and ck = 2c̃2

ν

(∫
{|x|>k} |D|

s
) 2
s

+ cν
k
→ 0 as k →∞, which leads to (4.3).

Now in (4.8) for t ≥ t0 and k large enough, using the estimate in Corollary 3.4 part v)
(see Theorem 3.7 iv)),∣∣1

2

d

dt
‖uφ

1
2
k ‖

2
L2(RN )

∣∣ =
∣∣ ∫

RN
utuφk

∣∣ ≤ ‖ut‖L2(RN )‖uφ
1
2
k ‖L2(RN ) ≤ Cε.

Thus, from (4.8), we get

1

2

∫
RN
|∆u|2φk + aρ

∫
RN
|u|ρ+1φk ≤ Cε, t ≥ t0

and we prove the second estimate in the statement.
For {S(tn)u0n} and ε > 0 we now have

‖S(tn)u0n − S(tm)u0m‖L2({|x|>k0}) ≤ ε

for all n,m ≥ N0 and some k0, N0 > 0. Since, due to Lemma 4.3 ii), almost all elements of
the sequence {S(tn)u0n} lie in a bounded subset of H2(RN), then using compact embedding
H2({|x| < k}) ↪→ L2({|x| < k}) there exists a subsequence, {S(tn′)u0n′}, which converges in
L2({|x| < k}) for any k ∈ N. Hence this subsequence is a Cauchy sequence in L2(RN) and
the proof is complete. �

Now we can finally prove the following.

Theorem 4.5. Assume (1.5)–(1.14) and suppose that (1.17) holds for some ω0 strictly
positive.

Then, the semigroup associated to (1.1) in L2(RN) has a global attractor A, which is
invariant, compact in L2(RN) and

sup
b∈B

inf
a∈A
‖S(t)b− a‖H2(RN ) → 0 as t→∞

for each bounded subset B of L2(RN). In addition, A is compact in H2(RN) and bounded in
H2(RN) ∩ Lρ+1(RN).

22



Proof: From Lemmas 4.3, 4.4 we have that the semigroup is bounded dissipative and asymp-
totically compact in L2(RN). Thus there is a global attractor A in L2(RN) (see [25, 22])
which due to Lemma 4.1 i) is bounded in H2(RN)∩Lρ+1(RN). Due to Lemma 4.2 A = S(1)A
is also compact in H2(RN).

Now we prove that the attractor A attracts bounded subsets of L2(RN) with respect to the
Hausdorff semi-distance in H2(RN). Indeed, if this is not the case, then there is a sequence of
the form {S(tn)u0n}, where {u0n} is bounded in L2(RN), tn →∞ and {S(tn)u0n} is separated
from A in the topology of H2(RN). Since A is a global attractor in L2(RN), choosing a
subsequence if necessary, we have that {S(tn−1)u0n} converges to a certain ψ ∈ A in L2(RN).
But A ⊂ H2(RN) ∩ Lρ+1(RN) so that ψ ∈ H2(RN) and by continuity of S(t) from L2(RN)
into H2(RN) in Lemma 4.2, we conclude that A 3 S(1)ψ = limn→∞ S(1)S(tn − 1)u0n =
limn→∞ S(tn)u0n in H2(RN), which is absurd. �

Remark 4.6. If we have a bound in H3(RN) as in Remark 3.5 and if ρ < N+6
N−6

, then due

to (4.4) and the compact embedding H3(B(r)) ↪→ Lρ+1(B(r)) for balls B(r) ⊂ RN of radius
r > 0, the semigroup {S(t) : t ≥ 0} would be asymptotically compact in H2(RN)∩Lρ+1(RN).
This holds in particular for any ρ > 1 if N ≤ 6.

In such a case, since {S(t) : t ≥ 0} is also a closed, bounded dissipative semigroup in the
latter space (see Lemmas 4.1, 4.3), there would exist then a global attractor in H2(RN) ∩
Lρ+1(RN), see [28, 11], and it would coincide with the attractor A in Theorem 4.5. In
particular, A in Theorem 4.5 would be then compact in H2(RN)∩Lρ+1(RN) and would attract
bounded subsets of L2(RN) with respect to the Hausdorff semidistance in H2(RN)∩Lρ+1(RN).

Remark 4.7. Also, from Theorem 4.5 observe that in the critical case ρ = ρc = N+4
N−4

,

(N ≥ 5), taking initial data in H2(RN), Proposition 3.11 applies and the energy in (1.3) is
a Lyapunov function for the semigroup {S(t) : t ≥ 0} in H2(RN) (see [22, pp. 49-50]); that
is,

(i) E : H2(RN)→ R is continuous and bounded below,
(ii) E(u0)→∞ as ‖u0‖H2(RN ) →∞,

(iii) E(S(t)u0) is nonincreasing in t for each u0 ∈ H2(RN),
(iv) if u0 is such that S(t)u0 is defined for all t ∈ R and E(S(t)u0) = E(u0) for t ∈ R

then u0 is an equilibrium point.

In particular the attractor A in Theorem 4.5 coincides in this case with the unstable set of
the set E of equilibria; that is A = Wu(E). Also, the semigroup S(t) is a gradient system,
see Definition 3.8.1 in [22].

Note that if ρ > ρc the above argument does not apply. However we will obtain below some
convergence of solutions to stationary solutions (see Theorem 4.8 below).

We now show that each solution converge, forwards in time, to the set of equilibria.

Theorem 4.8. Under the assumptions of Theorem 4.5 the set of equilibria E of the semigroup
{S(t) : t ≥ 0} is nonempty and attracts in H2(RN) points of L2(RN). Namely, for each
u0 ∈ L2(RN) and any sequence tn → ∞, there is a subsequence {tnk} and an equilibrium
ϕ ∈ E, such that

S(tnk)u0 → ϕ in H2(RN) as k →∞. (4.9)

Proof: Suppose that u0 ∈ L2(RN), tn → ∞ and let u = S(t)u0. Following [6, §3.5] (see
also [14]) it suffices to find an auxiliary sequence {t̃n} such that t̃n ∈ [tn− a, tn− b] for some
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fixed a, b > 0 and {u(t̃n)} has a subsequence convergent in L2(RN) to equilibrium. If this is
the case, letting τn := tn− t̃n ∈ [a, b] and using that S(tn)u0 = S(τn)S(t̃n)u0, we can assume
that {τn} has a convergent subsequence. Then using Lemma 4.2 we obtain (4.9).

From estimate v) in Corollary 3.4, we have∫ ∞
τ

‖ut‖2
L2(RN ) ≤M4(R, τ), (4.10)

while u satisfies (1.1) as in Theorem 3.7, for all t ∈ R+\Iu and Iu has zero Lebesgue measure.

From (4.10), choosing a subsequence if necessary, we have that
∫ tn− 1

2

tn−1
‖ut‖2

L2(RN ) → 0.

Consequently for each n ∈ N there exists a certain t̃n ∈ [tn − 1, tn − 1
2
], t̃n /∈ Iu such that

‖ut(t̃n)‖2
L2(RN ) ≤ 4

∫ tn− 1
2

tn−1
‖ut‖2

L2(RN ) as otherwise, integrating both sides in the set [tn−1, tn−
1
2
] we get the contradiction. Hence,

‖ut(t̃n)‖2
L2(RN ) → 0 as n→∞. (4.11)

Hence, choosing a subsequence if necessary we can assume that for some ϕ ∈ A ⊂
H2(RN) ∩ Lρ+1(RN)

u(t̃n)→ ϕ strongly in H2(RN) and u(t̃n;x)→ ϕ(x) for a.e. x ∈ RN . (4.12)

Also, since {u(t̃n)} is bounded in H2(RN) ∩ Lρ+1(RN), see Lemma 4.3 ii), we have
that {m(·)u(t̃n)}, {f01(·, u(t̃n)} and {f02(·, u(t̃n)} are bounded in H−2(RN), L2(RN) and

in L
ρ+1
ρ (RN) respectively (see Proposition 2.2 and (2.11)). Taking again a subsequence if

necessary, we can assume that

u(t̃n)→ χ0 weakly in H2(RN) ∩ Lρ+1(RN),

f01(·, u(t̃n))→ χ1 weakly in L2(RN),

f02(·, u(t̃n))→ χ2 weakly in L
ρ+1
ρ (RN),

∆u(t̃n)→ χ3 weakly in L2(RN),

m(·)u(t̃n)→ χ4 weakly in H−2(RN).

(4.13)

Now, using (4.12) and the continuity of f01, f02, and we get f0j(u(t̃n;x))→ f0j(ϕ(x)) a.e.
x ∈ RN , for j = 1, 2. Thus, we actually have χ0 = ϕ, χ1 = f01(·, ϕ) and χ2 = f02(·, ϕ). Using
weak continuity property of linear operators (see [8, Theorem III.9]) we also have χ3 = ∆ϕ
and χ4 = m(·)ϕ.

Since, we have∫
RN

(du
dt

(t̃n)v + ∆u(t̃n)∆v − gv −m(x)u(t̃n)v − f01(x, u(t̃n))v − f02(x, u(t̃n))v
)

= 0

for each n ∈ N and v ∈ H2(Ω) ∩ Lρ+1(RN), passing to the limit as n → ∞ we obtain via
(4.11), (4.13) that∫
RN

(
∆ϕ∆v − gv −m(x)ϕv − f01(x, ϕ)v − f02(x, ϕ)v

)
= 0 for any v ∈ H2(Ω) ∩ Lρ+1(RN).

Hence ϕ ∈ H2(RN) ∩ Lρ+1(RN) is an equilibrium of (1.1). �
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5. Finite time existence and ill posed problems

In this section we consider the Cauchy problem (1.18) with ρ > 1 , that is{
ut + ∆2u = u|u|ρ−1, t > 0, x ∈ RN ,

u(0, x) = u0(x), x ∈ RN ,
(5.1)

for which the energy is

E(u) =
1

2

∫
RN
|∆u|2 − 1

ρ+ 1

∫
RN
|u|ρ+1 (5.2)

(see (1.19)).

5.1. Finite time existence. In what follows, using concavity method (see [27]), we prove
in Theorem 5.2 that suitably smooth solutions of (5.1) corresponding to initial data with
negative energy cease to exist in a finite time.

Given ρ > 1, let u0 be a smooth enough function. Then we say that u(x, t) is a local
finite energy solution of (5.1) if it is defined for some 0 ≤ t < T ≤ ∞ and for each t,
u(t) ∈ H2(RN) ∩ Lρ+1(RN), ut(t) ∈ L2(RN), satisfies the equation in (5.1) and t 7→ E(u(t))
is absolutely continuous.

Remark 5.1. If N ≤ 8, given ρ > 1, the nonlinear term f in (1.1) is Lipschitz continuous
map from H4α(RN) into L2(RN) for α < 1 close enough to 1. Using then the results in [23,
Chapter 3] (see also [33, Theorem I.1]) we obtain that for each u0 ∈ H4(RN) there exists a
function

u ∈ C([0, τu0), H
4(RN)) ∩ C1([0, τu0), L

2(RN)) ∩ C1((0, τu0), H
4α(RN))

satisfying in L2(RN) both relations in (5.1) as long as it exists. In particular, it is a local
finite energy solution.

Theorem 5.2. Let ρ > 1 and assume u0 is a smooth enough initial data such that

E(u0) < 0.

Assume also that u(x, t) is a local finite energy solution of (5.1).
Then u ceases to exist in a finite time.

Proof: Observe that, since the local solution is smooth enough we have,

d

dt
(E(u)) = −‖ut‖2

L2(RN ),

which implies

E(u(t)) = −
∫ t

0

‖ut‖2
L2(RN ) + E(u0) and E(u(t)) ≤ E(u0).

On the other hand, from the equation in (5.1) we infer that

1

2

d

dt
‖u‖2

L2(RN ) = −‖∆u‖2
L2(RN ) + ‖u‖ρ+1

Lρ+1(RN )

and using the energy (5.2) we get for α > 0

1

2

d

dt
‖u‖2

L2(RN ) =
(α

2
− 1
)
‖∆u‖2

L2(RN ) +

(
1− α

ρ+ 1

)
‖u‖ρ+1

Lρ+1(RN )
− αE(u). (5.3)
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We now choose
α ∈ (2, ρ+ 1)

so that the coefficients in the parenthesis in (5.3) are positive; namely
α

2
− 1 > 0 and 1− α

ρ+ 1
> 0

in which case

1

2

d

dt
‖u‖2

L2(RN ) ≥ −αE(u(t)) = α

∫ t

0

‖ut‖2
L2(RN ) − αE(u0) ≥ −αE(u0). (5.4)

In particular, if E(u0) < 0 then

d

dt
‖u‖2

L2(RN ) ≥ 2α

∫ t

0

‖ut‖2
L2(RN ) > 0 (5.5)

and (5.4) yields
‖u(t)‖2

L2(RN ) ≥ −2αE(u0)t+ ‖u0‖2
L2(RN ) =: R(t) (5.6)

and the right hand side R(t)→∞ as t→∞.
Now we define

M(t) =

∫ t

0

‖u‖2
L2(RN )

and observe that (5.5) reads

d2M

dt2
(t) ≥ 2α

∫ t

0

‖ut‖2
L2(RN ).

Also, we have

M(t)
d2M

dt2
(t) ≥ 2α

(∫ t

0

∫
RN
uut

)2

=
α

2

(∫ t

0

d

dt
(‖u‖2

L2(RN )

)2

=
α

2

(
dM

dt
(t)− dM

dt
(0)

)2

and hence

M(t)
d2M

dt2
(t) > (

α

2
− ε)

(
dM

dt
(t)

)2

, (5.7)

provided that

ε ∈ (0,
α

2
) and

dM

dt
(t) >

α

2ε

(
1 +

√
1 +

2ε

α

)
dM

dt
(0). (5.8)

Assume the local finite energy solution, u, exists for all t > 0. Then (5.6) implies that
M(t) → ∞ and dM

dt
(t) → ∞ as t → ∞. In particular (5.8) holds for t ≥ t0. But now (5.7)

implies that 0 ≤ Mβ(t) is concave with β = 1 + ε − α
2
< 0, provided 0 < ε < α

2
− 1. Since

Mβ(t)→ 0 as t→∞, this is a contradiction. �

Remark 5.3. Note that, since ρ > 1, for any nontrivial u0 ∈ H2(RN)∩Lρ+1(RN) examining
the energy along the ray of u0,

E(su0) =
|s|2

2

∫
RN
|∆u0|2 −

|s|ρ+1

ρ+ 1

∫
RN
|u0|ρ+1

we have that E(0) = 0, while E(su0) > 0 for s ∈ (0, s0) and E(su0) < 0 for s > s0, where s0

depends on u0.
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5.2. Ill posed supercritical problems. In this section we give evidence that if ρ is super-
critical then (5.1) is ill posed.

For this we start with the following simple lemma.

Lemma 5.4. Assume ρ > 1 and u(x, t) is a smooth solution of (5.1) for x ∈ RN and
0 < t < T .

Then for λ > 0 and

α =
4

ρ− 1
,

the rescaled function

uλ(t, x) = λαu(λ4t, λx), x ∈ RN , 0 < t <
T

λ4
(5.9)

is also a solution of (5.1).

Proof: Observe that uλ satisfies

(uλ)t + ∆2uλ = λα+4
(
ut + ∆2u

)
= λα+4−αρ|uλ|ρ−1uλ

and the rest is immediate since α + 4− αρ = 0. �

Then we have the following ill–possedness result.

Theorem 5.5. Assume

ρ >
N + 4

N − 4

and assume u0 is a smooth enough initial data such that

E(u0) < 0

and there exists a local finite energy solution of (5.1).
Then (5.1) is ill posed in the sense of Hadamard in the class of finite energy solutions.

More precisely there exists a sequence of smooth functions un0 such that

un0 → 0 in H2(RN) ∩ Lρ+1(RN)

with negative energy, E(un0 ) < 0, and the corresponding finite energy solutions have existence
times

Tn → 0.

If

ρ =
N + 4

N − 4

then (5.1) is not uniformly well posed in the class of finite energy solutions. More precisely
there exists a sequence of smooth functions un0 such that

un0 is bounded in H2(RN) ∩ Lρ+1(RN)

with negative energy, E(un0 ) < 0, and the corresponding finite energy solutions have existence
times

Tn → 0.
27



Proof: By Theorem 5.2 the local finite energy solution is only defined for 0 < t < T <∞.
Consider then the rescaled solution uλ(x, t) as in Lemma 5.4, which has initial data

uλ(0) = λαu0(λx), α =
4

ρ− 1
.

Now, as λ → ∞, the solution uλ is defined for 0 < t < T
λ4
→ 0, while the initial data

satisfies

‖uλ(0)‖L2(RN ) = λα−
N
2 ‖u0‖L2(RN ),

‖∆uλ(0)‖L2(RN ) = λ2+α−N
2 ‖∆u0‖L2(RN ),

‖uλ(0)‖Lρ+1(RN ) = λα−
N
ρ+1‖u0‖Lρ+1(RN )

and

E(uλ(0)) =
λ2(α+2−N

2
)

2

∫
RN
|∆u0|2 −

λα(ρ+1)−N

ρ+ 1

∫
RN
|u0|ρ+1 = λα(ρ+1)−NE(u0) < 0,

because

2(α + 2− N

2
) = α(ρ+ 1)−N.

Now when ρ > N+4
N−4

then

2 + α− N

2
< 0, α− N

ρ+ 1
< 0 and α(ρ+ 1)−N < 0

hence

uλ(0)→ 0 in H2(RN) ∩ Lρ+1(RN)

and we get the result.
On the other hand, if ρ = N+4

N−4

2 + α− N

2
= 0, and α(ρ+ 1)−N = 0

hence

uλ(0) is bounded in H2(RN) ∩ Lρ+1(RN)

and we get the result. �

Concerning some other classes of solutions, we have the following. Following [12] the
critical exponent in Lq(RN), for 1 < q <∞, is

ρc = 1 +
4q

N
,

while the critical exponent in H2
q (RN) is

ρc = 1 +
4q

N − 2q
.

That means that if ρ ≤ ρc and u0 ∈ X, where X = Lq(RN) or H2
q (RN) then there exists a

suitable local solution of (5.1).
So, given ρ > 1 and u0 ∈ X, we say u(x, t) is a local X solution of (5.1) if it is defined for

some 0 ≤ t < T ≤ ∞, u(t) ∈ X and satisfies the equation in (5.1).
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Remark 5.6. For example, if m ∈ L∞(RN), g ∈ L2(RN) ∩ L∞(RN), N ≤ 7 and u0 ∈
H4(RN), the solution mentioned in Remark 5.1 is an Lq(RN) solution for 2 ≤ q <∞.

If moreover 2 ≤ q ≤ 2N
N−4

then it is an H2
q (RN) solution.

Theorem 5.7. Let X be either Lq(RN) or H2
q (RN).

Assume that ρ > ρc(X) and there exists u0 ∈ X and a local X solution that ceases to exist
in a finite time T .

Then (5.1) is ill posed in the sense of Hadamard in the class of X solutions. More precisely
there exists a sequence of smooth functions un0 such that

un0 → 0 in X

and the corresponding local X solutions have existence times

Tn → 0.

If ρ = ρc(X) there exists a sequence of smooth functions un0 such that

un0 is bounded in X

and the corresponding local X solutions have existence times

Tn → 0.

Proof: With the solution u(x, t) in the statement, consider then the rescaled solution uλ(x, t)
as in Lemma 5.4, which has initial data

uλ(0) = λαu0(λx), α =
4

ρ− 1
.

Now, as λ → ∞, the solution uλ is defined for 0 < t < T
λ4
→ 0, while the initial data

satisfies
‖uλ(0)‖Lq(RN ) = λα−

N
q ‖u0‖Lq(RN ).

Assume first X = Lq(RN). Then, when ρ > ρc we have

α− N

q
< 0

and then
‖uλ(0)‖Lq(RN ) = λα−

N
q ‖u0‖Lq(RN ) → 0

and we get the result.
When ρ = ρc we have α− N

q
= 0 and then

‖uλ(0)‖Lq(RN ) = ‖u0‖Lq(RN )

is bounded and we get the result.
Assume now that X = H2

q (RN). We have now that

‖uλ(0)‖Lq(RN ) = λα−
N
q ‖u0‖Lq(RN ),

‖∆uλ(0)‖Lq(RN ) = λ2+α−N
q ‖∆u0‖Lq(RN ).

Now when ρ > ρc

α + 2− N

q
< 0

and then
‖uλ(0)‖H2

q (RN ) ≤ λα+2−N
q ‖u0‖H2

q (RN ) → 0 as λ→∞.
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When ρ = ρc we have α + 2− N
q

= 0 and then

‖uλ(0)‖H2
q (RN ) ≤ ‖u0‖H2

q (RN )

is bounded and we get the result. �

Remark 5.8. Note that similar arguments have been used for second order problems in [5].
In such a case more complete results have been given due again to the maximum principle.

Remark 5.9. It remains an open problem if there exists an Lq(RN)-solution or an H2
q (RN)

solution that actually ceases to exist in finite time.
From Proposition 3.2 in [13] we know that if for a solution of (5.1), we have a bound in

finite time in Ls0(RN) ∩ L∞(RN) for some s0 > 1, then we obtain bounds in H4
s (RN) for

all s ≥ s0. In particular, the solution exists up to that time. Also from Gronwall’s type
argument, a bound in finite time in L∞(RN) implies a bound in Lq(RN), if u0 ∈ Lq(RN),
and hence the solution exists up to that time.

Therefore, if an Lq(RN)-solution (or an H2
q (RN) solution) ceases to exist in finite time

then for all s > 1 the norm in Ls(RN) ∩ L∞(RN) becomes unbounded in finite time.

6. Final remarks

As stressed in the Introduction a main difference between the solutions of the second order
problem (1.1) and the second order one (1.2) is that for supercritical good signed nonlinear
terms the solutions of the latter become bounded in space, due to comparison arguments.

As a consequence that for solutions of (1.1) we can not find such bound, we have not been
able to obtain results one would obtain for (1.2).

For example, in Theorems 3.2 and 3.7 no further smoothing than H2(RN)∩Lρ+1(RN) was
obtained for the solutions. Also, except for the critical case, see Proposition 3.11, we could
not derive in general the energy of the solutions, see Remark 3.8.

On the other had, concerning the asymptotic behavior of solutions, we could not find
asymptotic compactness in Lρ+1(RN) despite the tail estimates in Lemma 4.4. Only H2(RN)
asymptotic compactness was achieved. In particular we could not prove the attractor in
Theorem 4.5 attracts in Lρ+1(RN). Analogously in Theorem 4.8 the convergence to equilibria
could not be proved in Lρ+1(RN) either.

All these stem from the fact that, in the supercrticial regime, we can not control the
nonlinear term with the linear diffusion one.
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